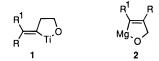
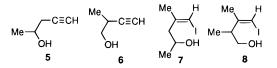
Anti-Carbometalation of Homopropargyl Alcohols and Their Higher Homologues via Non-Chelation-Controlled Syn-Carbometalation and **Chelation-Controlled Isomerization**[†]


Shengming Ma and Ei-ichi Negishi*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907


Received December 4, 1996

Highly stereoselective anti-carbometalation reactions of alkynes are rare,¹ the great majority of the synthetically useful carbometalation reactions of alkynes, such as Zr-catalyzed carboalumination² and carbocupration,³ being syn-addition processes. One notable example of stereoselective anti-carbometalation is the Cu-catalyzed carbomagnesiation reaction of propargylic alcohols.⁴ Unfortunately, the scope of this reaction does not generally extend to homopropargyl alcohols and higher homologues.

We report herein a novel strategy for achieving net anti-carbometalation of homopropargyl alcohols and even some higher homologues. This strategy critically hinges on our finding that the syn- and stereorandom-carboalumination products obtained from ω -hydroxyalkynes represented by HORC=CZ, where Z = H, Si, or Ge, can be thermally isomerized to give nearly exclusively or predominantly alkenylalanes that correspond to anticarboalumination of alkynes (Scheme 1). The reactions shown in Scheme 1 are fundamentally different from the carbotitanation reaction of homopropargyl alcohols and longer alkynols,⁵ which displays the opposite regioselectivity of carbometalation, producing 1, and must therefore be chelation-controlled in the addition step itself. The reactions presented here are also critically different from the Cu-catalyzed carbomagnesiation⁴ of propargylic alcohols producing 2 in that these two classes of reactions display essentially nonoverlapping and hence complementary scopes.

Specifically, treatment of 3-butyn-1-ol with Me₃Al (3 equiv) and 25 mol % of Cp₂ZrCl₂ in (CH₂Cl)₂ at 23 °C produced the expected syn-methylalumination product 3 (>98% E) as previously reported by us.⁶ Upon refluxing the reaction mixture for 72 h, however, a complete reversal of the stereochemistry from >98% E to >98% Ztook place to produce, after iodinolysis, a 60% yield of 4a (E = I). Similarly, 1- and 2-methyl-substituted homopropargyl alcohols 5 and 6 were converted to 7 and **8**, both of which were >98% Z, in 61 and 50% yields, respectively.7 These products appear to represent a class of compounds not readily accessible by any of the previously known reactions.8

It is important to note that, in the absence of the homopropargylic hydroxy group, the *E*-to-*Z* isomerization does not occur. Thus, the corresponding reaction of 1-decyne merely gave (*E*)-1-iodo-2-methyl-1-decene (>98 E) in about 80% yield, and neither the stereochemistry nor the yield detectably changed even after 72 h at the refluxing temperature of 1,2-dichloroethane. In fact, no detectable isomerization was observed even with 4-pentyn-1-ol. The observed isomerization of 3 must therefore be chelation-controlled. We tentatively propose a Lewis acid-induced chelation-controlled mechanism producing 9 as the product as shown in Scheme 2. Although we have thus far been unsuccessful in obtaining definitive structural data on 9, the corresponding reaction of the terminally Me₃Ge-substituted derivative 10 was faster $(36-48 \text{ h}, 25 \text{ °C}, \text{CD}_2\text{Cl}_2)$ and cleaner, producing a >80% NMR yield of 11: ¹H NMR (500 MHz, CD_2Cl_2) δ -0.58 (bs, 3 H), 0.22 (s, 9 H), 1.84 (s, 3 H), 2.0-2.5 (m, 2 H), 3.9–4.25 (m, 2 H); ¹³C NMR (50 MHz, CD_2Cl_2) δ –6.50, 1.15, 28.29, 41.02, 64.63, 110.31, 110.62. Hydrolysis with aqueous Na_2CO_3 and iodinolysis gave **12a** (E = H, >98%) *E*) and **12b** (*E* = I, >95% *Z*) in 77 and 73% isolated yields, respectively. Furthermore, treatment of 11 with ClCOOMe gave 13, albeit 12% yield.

Substitution of the terminal alkynyl hydrogen atom with a metal-containing group, such as Si and Ge, not only accelerates stereoisomerization⁹ but also expands the scope of reaction. As summarized in Table 1, the reaction of a series of ω -(trimethylsilyl)alkynols with Me_3Al (3 equiv) and Cp_2ZrCl_2 (1 equiv) at the refluxing temperature of CH₂Cl₂ gave stereoselectively the antimethylalumination products. The anti/syn ratios were > 98/<2 for 3-butyn-1-ol derivatives, \ge 97/ \le 3 for 4-pentyn-1-ols, and 88/12 for 5-hexyn-1-ols. However, those for the 6-heptyn-1-ol and 10-undecyn-1-ol derivatives were roughly in the 40/60-60/40 range and were very similar to that observed with 1-(trimethylsilyl)-1-octyne.¹⁰ These latter results reinforce our view that the high anti/syn ratios observed with the C4 and C5 ω -alkynols must be chelation-controlled, involving the formation of six- and seven-membered aluminacycles, respectively. The anti/ syn ratio of 88/12 observed with 6-(trimethylsilyl)-5hexyn-1-ol is very intriguing. It suggests that the reaction may be largely chelation-controlled. If so, it

[†] We wish to dedicate this paper to Professor D. Seebach of ETH, Zürich, on the occasion of his 60th birthday.

⁽¹⁾ For a review, see: Normant, J. F.; Alexakis, A. Synthesis 1981, 841.

^{(2) (}a) Van Horn, D. E.; Negishi, E. J. Am. Chem. Soc. 1978, 100, 2252. (b) Negishi, E.; Van Horn, D. E.; Yoshida, T. J. Am. Chem. Soc. 1985, 107, 6639. (c) Negishi, E. Pure Appl. Chem. 1981, 53, 2333. (3) (a) Normant, J. F.; Bourgain, M. Tetrahedron Lett. 1971, 2583. (b) Normant, J. F. J. Organomet. Chem. Lib. 1976, 1, 219. (4) (a) Jousseaume, B.; Duboudin, J. G. J. Organomet. Chem. 1975, 91, C1. (b) Duboudin, J. G.; Jousseaume, B. J. Organomet. Chem. 1979, 168.1

^{168, 1.}

^{(5) (}a) Coleman, R. A.; O'Doherty, C. M.; Tweedy, H. E.; Harris, T. V.; Thompson, D. W. J. Organomet. Chem. 1976, 107, C15. (b) Smedley,
 L. C.; Tweedy, H. E.; Coleman, R. A.; Thompson, D. W. J. Org. Chem.
 1977, 42, 4147. (c) Brown, D. C.; Nichols, S. A.; Gilpin, A. B.; Thompson,
 D. W. J. Org. Chem. 1979, 44, 3457.
 (c) Brode C. L. Van Harr, D. E. Mark, M. W. M. 1977, 2016

⁽⁶⁾ Rand, C. L.; Van Horn, D. E.; Moore, M. W.; Negishi, E. J. Org. Chem. 1981, 46, 4093.

⁽⁷⁾ Conversion of 6 to 8 was performed by Ms. F. Liu in our laboratories.

⁽⁸⁾ See, however: Kocienski, P.; Wadman, S.; Cooper, K. J. Am. Chem. Soc. 1989, 111, 2363.

⁽⁹⁾ Facile stereoisomerization of Si-substituted alkenylalanes and alkenyllithiums has been previously reported and discussed. (a) Miller, J. A.; Negishi, E. *Israel J. Chem.* **1984**, *24*, 76. (b) Negishi, E.; Takahashi, T. J. Am. Chem. Soc. 1986, 108, 3402.

⁽¹⁰⁾ Snider, B. B.; Karras, M. J. Organomet. Chem. 1979, 179, C37.

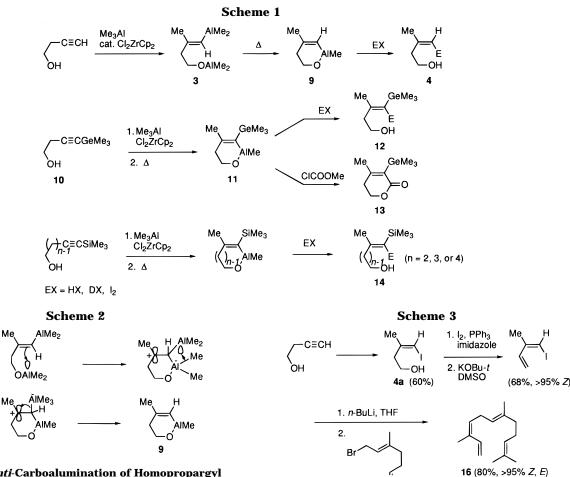


 Table 1. Anti-Carboalumination of Homopropargyl

 Alcohols and Their Higher Homologues^a

Mo

	OH		1. Cp ₂ ZrCl ₂ AlMe ₃ (3 equiv)		E⁺				
			2. thermal isomerization			-	· · · · ·	Ъ	
	alkynol		cond for isomerization					product	
entry	n	z	temp, °C	time, d		E		yield, ^b %	anti/syn ^c
14	2	н	reflux	3		I	(4 a)	60	>98:2
2 ^d	5°		reflux	5		T	(7)	61	>98:2
3ď	6	1	reflux	5		Т	(8)	50	>98:2
4	2	SiMe ₃	25	3		Т	(14a)	73 (77)	>98:2
5 ^d	2	SiMe ₃	50	3		T	(14a)	52 (52)	>98:2
6	2	SiMe ₃	25	3		н	(14b)	64 (70)	>98:2
7	19 ^{<i>g</i>}		45	4		Ι	(1 4c)	60 (60)	>98:2
8	3	SiMe ₃	25	3.5		I	(1 4d)	59 (66)	>97:3
9	4	SiMe ₃	45	0.7		- I	(14e)	60 (65)	88:12
10	4	SiMe ₃	25	3.5		н	(14f)	80 (82)	86:14
11	5	SiMe ₃	45	0.5		Т	(1 4g)	54 (64)	60:40
12	9	SiMe ₃	25	3		١	(14h)	h (62)	47:53
13	2	GeMe ₃	25	1.5		Т	(12b)	73 (84)	>95:5
14	2	GeMe ₃	25	1.5		н	(12a)	77 (84)	>98:2

^{*a*} Unless otherwise stated, the reaction was carried out in CH₂Cl₂ by using 1 equiv of Cp₂ZrCl₂. ^{*b*} Isolated yield with the NMR yield in parentheses. ^{*c*} The thermally equilibrated ratio of the anticarboalumination to syn-carboalumination products. ^{*d*} The reaction was carried out in (CH₂Cl)₂ using 25% of Cp₂ZrCl₂. ^{*e*} **5** = 4-pentyn-2-ol. ^{*f*} **6** = 2-methyl-3-butyn-1-ol. ^{*g*} **19** = 5-(trimethylsi-lyl)-4-pentyn-2-ol. ^{*h*} Not determined.

must involve the preferential formation of an eightmembered aluminacycle. The differences in the ease and scope between stereoisomerization of terminally unsubstituted ω -alkynols and that of ω -silyl-substituted analogues are striking. One plausible explanation for the observed differences might be that isomerization of unsubstituted ω -alkynols must be not only thermodynamically driven by chelation but also kinetically chelation-initiated and that the latter benefit must be practically limited only to the cases of 3-butyn-1-ols. On the other hand, isomerization of the Si-substituted derivatives must kinetically rely on their intrinsic configurational instability,¹⁰ and chelation is significant only in a thermodynamic sense. Regardless of their mechanism, these favorable isomerization reactions observed even with 4-pentyn-1-ol and 5-hexyn-1-ol derivatives were quite unexpected but of considerable synthetic potential. For example, treatment of **14e** (Z/E = 88/12) with NaOMe in MeOH at 65 °C for 12 h gave an 85% yield of the desilylated product, *i.e.*, 6-iodo-5-methyl-5-hexen-1-ol (**15**), which was also 88% Z.

The conversion of **4a** into (3Z)- α -farnesene¹¹ (**16**) as summarized in Scheme 3 provides an example of natural products synthesis employing the newly developed strategy.

Acknowledgment. We thank the National Science Foundation (CHE-9402288) for support of this research. We also thank Ms. F. Liu for providing some experimental data.

Supporting Information Available: Experimental details for the preparation of **4a**, **13**, **14a**, **14b**, **14e**, and **16** as well as spectral data of **7**, **8**, **12a**, **12b**, **13**, **14d**, **14f**, **14g**, **14h**, and **15** (7 pages).

JO9622688

⁽¹¹⁾ For a recent synthesis of (3Z,6E)-α-farnesene, which was 80% stereoselective, see: Ramaiah, P.; Pegram, J. J.; Millar, J. G. J. Org. Chem. 1995, 60, 6211.